
H
et

er
og

en
eo

us
 C

om
pu

tin
g Unstructured Mesh Physics on the Cell

Broadband Engine

Charles R. Ferenbaugh�cferenba@lanl.gov

Unstructured mesh algorithms are
particularly challenging to implement on the
CBE. For optimal CBE performance, a problem
must be divided into many small, independent
chunks that can fit into SPU local memory.
But this is difficult to do for unstructured
meshes.

This approach was used to implement a
FLAG compute kernel on the SPU.
Three standard test problems were run
(see results at right). The accelerated
kernel showed an average speedup of
over 5x compared to the original
Opteron kernel.

A similar approach may also be useful on other emerging architectures with
multiple threads and reduced memory on core, such as GPU and many-core.
.

For example, in the FLAG rad-hydro code, most
computation is done on sides
(see diagram at left).

Connectivity arrays are used to get data from
zones/points/edges as needed.

Because the mesh has no structure, chunks of
sides generally do not correspond to chunks of
points or edges.

To address this problem, we require the PPU to
replicate, or scatter, point and edge data onto
each side. Then chunks of sides can be sent to
the SPU for compute, along with the replicated
point and edge data. When compute is done,
the PPU will gather the replicated data back to
points and edges.

PPU
Memory

(4 GB)

SPUs

Memory (256 kb each)

Memory Flow
Controller

point edge

zone side

H
et

er
og

en
eo

us
 C

om
pu

tin
g Spatio-Temporal Frontiers of Atomistic

Simulations in the Petaflop
Computational World

PI: Tim Germann (T-1)
Co-PIs: Art Voter (T-1), Jim Hammerberg (XCP-5)
T-1: Shao-Ping Chen, Shiyu Du (PD) , Brad Holian, Danny Perez
MST-8: Dick Hoagland, Ben Liu, Steve Valone, Jian Wang
XCP-5: Ramon Ravelo (UTEP LTVSM), Davis Tonks
CCS-2: Steve Sintay (CMU GRA), Sriram Swaminarayan
P-24: Sheng Luo, Bedri Arman (TAMU GRA)

Goal: Develop a transformational atomistic simulation capability to enable studies of
previously inaccessible materials science issues, by bringing together world-class
LANL leaders in both large-scale and accelerated molecular dynamics algorithms.

Initial target applications on which we will demonstrate this capability include:
 - Dislocation pileup against a grain boundary: determine the nature of the critical
 event controlling material strength, a fundamental long-standing problem; and

 - Spall failure: develop an improved understanding of void nucleation, growth, and
 coalescence dynamics at length and time scales that cannot be directly probed
 experimentally, enabling development of a science-based model.

Both SPaSM (Scalable Parallel Short-range Molecular dynamics) and the ParRep AMD
(Accelerated Molecular Dynamics) codes were among the initial set of
Roadrunner Open Science application codes, and demonstrated excellent hybrid
performance and scalability.

Algorithm Developments

Materials science challenges

Approach #1: Local bond-boost hyperdynamics
 - Massively parallel implementation

Approach #2: Concurrent MD-AMD via embedded AMD regions
 - The embedding approach has been used to study void growth and linkup

• Dislocation-grain boundary interactions:
 - Continue efforts to accelerate transmission event in a reduced-size
 (quasi-2D) model.
 - Identify transmission mechanisms and kinetics, and their dependence
 on applied stress (strain rate) and temperature.

• Ductile spall failure:
 - Extend studies of different defects (e.g. initial void sizes, grain
 boundaries, or other heterogeneous nucleation sites) down to
 experimentally relevant strain rates of 104-105 s-1.
 - Use AMD+embedding scheme to study void growth dynamics
 (dislocation propagation velocity), coalescence of multiple voids, and
 interactions of emitted dislocations with other nearby heterogeneities
 (e.g. a grain boundary).

1012

N
um

be
r o

f A
to

m
s 109

106

103

fs ps ns µ ms s

1 m3

1 nm3

Memory Capacity
Linear Scaling Parallel MD

(e.g. SPaSM)

Accelerated MD (AMD)

Ductile
Spall

Failure

Dislocation
Pileup @
Boundary

Timescale

Radiation Damage:
Annealing Between
Collision Cascades

Shear
Band

Formation

This Project

H
et

er
og

en
eo

us
 C

om
pu

tin
g HACC: Hardware Accelerated

Cosmology Codes

Katrin Heitman, heitman@lanl.gov, 505-665-9035
Salman Habib, habib@lanl.gov, 505-667-5265

Recent remarkable progress in cosmology
is driven by large-scale sky survey
observations. The size and complexity of
new datasets poses a major challenge; to
address it, we have developed the HACC
framework (Hardware Accelerated
Cosmology Codes) for heterogeneous
systems, portable across different
architectures. HACC runs on LANL’s Cell-
accelerated Roadrunner, and has been
ported to GPU-accelerated systems. A
hybrid particle/grid algorithm overcomes
communication and performance bottle-
necks by combining algorithmic features
with overloaded data layouts.

• HACC uses grids for long-range calculations and

particles for short-range calculations

• On Roadrunner, the CPU and Cell layers are

memory-balanced but the Cell layer dominates com-

putational performance, hence particles live at the

Cell layer

• In GPU clusters, node memory is dominated by

CPUs and all information resides there; particle in-

teractions are streamed through the GPUs

• Inter-node communication is minimized by particle

overloading (a particle ‘ghost zone’) with intermittent

refereshes using nearest neighbor communication

Weak scaling results for HACC on Roadrunner: the
code scales across the entire machine

Structure Formation in the Universe

Particles

Grid Grid

Particles

17 CUs

CU 1 CU 17

Cell BEs Cell BEs

Opterons Opterons

Switched Network

H
et

er
og

en
eo

us
 C

om
pu

tin
g ForOpenCL: Tools for Parallel Acceleration

of Fortran Applications with OpenCL

Craig Rasmussen, crasmussen@lanl.gov

/* transformed OpenCL kernel */

__kernel void add(__global float * A,
 __global float * B,
 __global float * C)
{
 const uint x = get_global_id(0);
 const uint y = get_global_id(1);
 const uint k = x + y*get_global_size(0);
 C[k] = A[k] + B[k];
}

! add two scalars
!
elemental function add(a,b)
 real :: a, b, add
 add = a + b
end function

Step 1: Create Fortran Function

Step 2: Automatically Transform to
OpenCL kernel using ForOpenCL.

Step 3: Modify application to call
the OpenCL kernel.

! declare arrays and CL Objects
real, target, dimension(NX,NY) :: A, B, C
type(CLBuffer) :: d_A, d_B, d_C
...

! create OpenCL device (GPU or CPU)
status = device%init(GPU)

! create memory buffers
d_A = device%createBuffer(4*NX*NY,c_loc(A))
...

! add arguments to the kernel
status = kernel%setKernelArgMem(0, d_A)
...

! call the kernel
status = kernel%run(16,16,NX,NY)

! copy results from the device
h_C = d_C%map(CL_MAP_READ)
call c_f_pointer(h_c, p_C, shape(C))
print *, p_C(1,:)

Standard Fortran transformational
functions like CSHIFT can be used
with ForOpenCL for more
complicated algorithms like
multipoint stencil operations.

! compute the 3-point, centered average
! of array B along the first dimension
!
A = B + CSHIFT(B, SHIFT=-1, DIM=1) &
 + CSHIFT(B, SHIFT=+1, DIM=1)
A = A/3.0

ForOpenCL provides programmers with the tools necessary to parallelize Fortran
applications for GPU and multi-core acceleration. It includes a set of bindings for
building and running OpenCL kernelsfrom Fortran. It also provides the capability to
transform some Fortran procedures automatically with source-to-source
transformations using ROSE. For example, pure-elemental Fortran functions can be
transformed directly to OpenCL kernels by ForOpenCL.

Special versions of the Fortran transformational functions can be used (not
yet available in ForOpenCL) to automatically parallelize over MPI nodes. These
functions will allow full parallelization across the architectural hierarchy (GPUs
and MPI nodes) with data-parallel functions like CSHIFT. ForOpenCL requires
a Fortran 2003 compiler with at least objects and C interoperability.
transformations using ROSE. For example, pure-elemental Fortran functions can be
transformed directly to OpenCL kernels by ForOpenCL.

H
et

er
og

en
eo

us
 C

om
pu

tin
g Understanding Stimulated Raman

Scattering (SRS) Effects for Nuclear
Fusion Research

Lin Yin, lyin@lanl.gov

In January 2011, laser fusion ignition experiments begin at the
National Ignition Facility (NIF)

• Aim 192 laser beams into a gold cylinder called a hohlraum
• 1.8 Million Joules of energy are deposited in 10 ns into
 the hohlraum - the walls are heated up to several million degrees
• The hot walls radiate X-rays, which are absorbed by and compress
 the capsule—the fuel density becomes 100x the density of lead and
 temperatures of 100 million degrees
• Deuterium-tritium fusion ignites

• Lasers shining through ionized gas (plasma) can experience
 stimulated Raman scattering (SRS)
• If SRS is too great, ignition fails:
 - Energy is lost
 - Compression is not symmetric
 - Hot electrons are made that pre-heat the core and make it
 hard to compress
• SRS poses one of the biggest uncertainties in laser fusion

• Electron trapping reduces wave (Landau) damping
 - SRS grows faster
 - Onset threshold is lower
• Trapping takes energy from the wave, which lowers the
 wave frequency and phase speed
 - Wave bending
 - Breaks into filaments
• These processes destroy spatial coherence, cause SRS to
 saturate, and limit how much SRS backscatter can occur.

However , getting all the laser energy in is tricky

Electron trapping physics explains the curious properties of SRS

Roadrunner allows us to reduce uncertainty in threshold intensity in NIF beams

SRS saturation in 3D VPIC simulations under conditions relevant to NIF

!"#$%&'()*"+,-+).+/#,)

0#(12(3) 42"+-#(%+5'()

H
et

er
og

en
eo

us
 C

om
pu

tin
g Ion Acceleration for Ion-Driven Fast Ignition

Lin Yin, lyin@lanl.gov

Fusion experiments at the National Ignition Facility (NIF) use
lasers to generate X-rays that compress a Deuterium-tritium
capsule. However, due to instabilities caused by laser-plasma
interactions, the energy delivered to the capsule may be
insufficient to trigger fusion ignition. Mid-Z Ion-driven fast
ignition generates an ion beam that delivers extra energy to the
pre-compressed capsule to start the fusion process.

A new acceleration regime emerges: The break-out afterburner (BOA)

3D VPIC simulation of the BOA done on Roadrunner

The Break-Out Afterburner (BOA) is one acceleration technique that may
achieve these desiderata

Achieving mid-Z ion fast ignition places stringent requirements on ion beams

• Acceleration of carbon ions to greater than 2 GeV energy
• Requires much lower laser intensities which have already been realized experimentally
 (1021 W/cm2)

Our research on the BOA is enabled by recent advances in plasma simulation
and experimental capability
• High performance computing – enables 3D modeling of BOA physics
 - Highly optimized 3D PIC code VPIC
 - Powerful supercomputers (e.g., Roadrunner)
• Two new experimental technologies enabling realization of BOA in the laboratory
 - High contrast, high energy pulses at Trident
 - Free-standing nm-targets at LMU

.

• High energy
• Conversion efficiency

Initially, heating is
confined to the front of

the target

a few slom depth thick

ne ~ 660 ncr

Target expands and skin
depth widens – volumetric
heating of entire target

Target turns relativistically
transparent - BOA begins

	Button1:
	Button2:
	Button3:
	Button4:
	Button5:
	Button6:

